Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light.

نویسندگان

  • Nikhil Naik
  • Christopher Barsi
  • Andreas Velten
  • Ramesh Raskar
چکیده

Imaging through complex media is a well-known challenge, as scattering distorts a signal and invalidates imaging equations. For coherent imaging, the input field can be reconstructed using phase conjugation or knowledge of the complex transmission matrix. However, for incoherent light, wave interference methods are limited to small viewing angles. On the other hand, time-resolved methods do not rely on signal or object phase correlations, making them suitable for reconstructing wide-angle, larger-scale objects. Previously, a time-resolved technique was demonstrated for uniformly reflecting objects. Here, we generalize the technique to reconstruct the spatially varying reflectance of shapes hidden by angle-dependent diffuse layers. The technique is a noninvasive method of imaging three-dimensional objects without relying on coherence. For a given diffuser, ultrafast measurements are used in a convex optimization program to reconstruct a wide-angle, three-dimensional reflectance function. The method has potential use for biological imaging and material characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved phase-space distributions for light backscattered from a disordered medium.

We demonstrate time-resolved measurement of optical phase-space distributions as a new probe for investigating the propagation of light in disordered media. Phase-space techniques measure the joint transverse position and momentum distribution of the scattered light, and are sensitive to the spatially varying phase and amplitude of the field. Using this method we investigate light backscattered...

متن کامل

Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light.

We present a wide-field method for obtaining three-dimensional images of turbid media. By projecting patterns of light of varying spatial frequencies on a sample, we reconstruct quantitative, depth resolved images of absorption contrast. Images are reconstructed using a fast analytic inversion formula and a novel correction to the diffusion approximation for increased accuracy near boundaries. ...

متن کامل

Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy

We applied hyperspectral imaging to measure spatially-resolved diffuse reflectance spectra in the visible range and an iterative inversion method based on forward Monte Carlo modeling to quantify optical properties of two-layered tissue models. We validated the inversion method using spectra experimentally measured from liquid tissue mimicking phantoms with known optical properties. Results of ...

متن کامل

Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering

We demonstrate accurate determination of the size and shape of spherical and spheroidal scatterers through inverse analysis of two-dimensional solid-angle and depth resolved backscattered light intensities. Intensity of scattered light is measured over a wide range of solid angles using a novel scanning fiber optic interferometer from both individual and ensembles of scatterers. T-matrix based ...

متن کامل

Variational estimation of inhomogeneous specular reflectance and illumination from a single view.

Estimating the illumination and the reflectance properties of an object surface from a few images is an important but challenging problem. The problem becomes even more challenging if we wish to deal with real-world objects that naturally have spatially inhomogeneous reflectance. In this paper, we derive a novel method for estimating the spatially varying specular reflectance properties of a su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2014